

Диоксид циркония – информация для стоматологов

ФАКТЫ - Вопросы и ответы, относящиеся к практическому использованию диоксида циркония

Действительность и возможности

Действительность и возможности

Что такое цирконий?

- Циркон (ZrSiO $_4$) это материал, принадлежащий к классу минералов солей кремнёвой кислоты, который был открыт М.Г. Клапротом в 1789 г.
- Диоксид циркония (ZrO₂) это соединение элемента циркония, встречающегося в природе, который применяется в ортопедической стоматологии уже на протяжении 10-15 лет. Он частично стабилизируется иттрием и обогащается алюминием. Это дает ему такие положительные характеристики, как прочность на изгиб (> 1400 МПа*), жесткость (1200 Твердость по Виккерсу*) и модуль Вейбулла 15,84*. (* Значения для ICE Zirconia Translucent)

Где он используется?

• Кроме того, что циркон обладает высокой стойкостью, он еще и является полностью биосовместимым материалом. Вот почему он все больше и больше используется в медицине (области органов слуха, ортопедии) и стоматологии (штифты, коронки, реставрация зубных протезов, имплантаты). В промышленности он используется уже в течение более 40 лет. Белый основной цвет циркона, возможность окрашивания в цвета дентина и биотехнологические характеристики позволяют изготавливать биосовместимые, высококачественные и эстетические стоматологические и имплантатные конструкции.

Возможно ли использования цельного циркона?

- Специалисты среди зубных техников вполне способны осуществить конструирование из циркона зубных протезов с металлической основой со стандартной точностью.
- В связи с этим фирма Zirkonzahn разработала циркон Prettau с высокой прозрачностью и технологию окрашивания, специально для этого предназначенную. Таким образом, могут быть изготовлены эстетически привлекательные протезирующие конструкции из цельного циркона.

Возможно ли существование съемных зубных протезов?


• Да, если принять во внимание определенные физические законы технологии производства для циркона, а также, если зубные техники овладеют этой технологией производства.

Научная информация

- Основным сырьем для производства диоксида циркония является минерал циркон (ZrSiO₄). Оксид циркона получают из него путем химической обработки с помощью добавок. Полученный реагентный порошок смешивается с присадками. Разграничивают агломерационные присадки, которые в особенности оказывают воздействие на характеристики спекания и характеристики готовой керамики, и вспомогательные материалы, которые способствуют формообразованию. Соответственно, заготовки из диоксида циркония изготавливаются путем различных методик.
- В то время, как агломерирующие добавки остаются в оксиде циркона, вспомогательные материалы, которые, кроме воды, являются в основном легкоиспаряющимися органическими соединениями, удаляются из отливки оксида циркона перед процессом агломерации, не оставляя никаких следов. И хотя этот материал подвергается процессу предварительного спекания, материал остается способным к обработке с помощью боров, сделанных из карбида вольфрама. Объект вырезается фрезой из блока циркона, мягкого как мел, размер которого примерно на 25% больше, чем размер этого объекта. Потом выполняется окончательная агломерация при температуре 1500 °C, и, таким образом, достигается его конечная консистенция. Во время этого процесса объект дает усадку на 20%. Только в процессе окончательной агломерации структуры действительно приобретают свои подлинные характеристики. Уплотнение частиц порошка оксида циркона происходит путем уменьшения удельной поверхности.

• Это получают с помощью термозависимых диффузионных процессов с изменением частей поверхности, межзёренной границы и диффузионного объема. Если твердотельная диффузия проходит слишком медленно, процесс агломерации может проводиться под давлением. Это называется горячим прессованием или горячим изостатическим прессованием ("HIP процесс") циркона. Характеристики такой цирконовой керамики зависят в большей степени от химического состава материала и процесса изготовления.

Научная информация

- Различают полностью стабилизированный диоксид циркония (FSZ) и частично стабилизированный диоксид циркония (PSZ). Частичная стабилизация может быть достигнута с использованием добавки 3-6% CaO, MgO или Y₂O₃. В зависимости от условий изготовления стабилизироваться может кубическая, тетрагональная или моноклиническая модификация. Частично стабилизированный диоксид циркония имеет высокую термостойкость, и, таким образом, также подходит для использования при высоких температурах в машиностроении.
- Кубическая модификация диоксида циркония может стабилизироваться от абсолютного нуля до кривой солидуса добавлением присадки 10-15% CaO и MgO (FSZ), и этот керамический материал может термически и механически выдерживать температуру 2000 °C. Однако, из-за низкой теплопроводности и высокого коэффициента теплового расширения по сравнению с частично стабилизированным диоксидом циркония термостойкость полностью стабилизированного диоксида циркония ниже.
 Диоксид циркония, применяемый в стоматологии, имеет следующий состав: 95 % ZrO₂ + 5 % Y₂O₃.

ICE ZIRCONIA TRANSLUCENT И ZIRCONIA PRETTAU

Оба эти вида диоксида циркония можно использовать для изготовления коронок и мостов. Благодаря своей высокой степени прозрачности zirconia Prettau в особенности подходит для изготовления мостов, состоящих полностью из диоксида циркония.

ICE ZIRCONIA

COCTAB		СПЕЦИФИКАЦИЯ
Zr O ₂ (+HfO ₂)	% :	Основной компонент
$\overline{Y_2 0_3}$	%:	4.95 ~ 5.26
$Al_2 0_3$	% :	0.15 ~ 0.35
SiO ₂	%:	Max. 0.02
$\overline{\text{Fe}_2 0_3}$	%:	Max. 0.01
Na ₂ 0	%:	Max. 0.04
Плотность (г/см3), спеченны	й	6,05
Твердость (HV10)		>1250
Модуль Вейбулла		> 15,84
Прочность на изгиб R.T. (МПа) Transl.		>1400 (MPa)
Прочность на изгиб R.T. (МПа) Prettau		>1200 (MPa)

Вопросы и ответы, относящиеся к практическому использованию диоксида циркония

Какова долговечность каркасных структур из диоксида циркония, включающих облицовку фарфоровой покровной фасеткой, по сравнению с коронками из фарфора с металлом?

• Если конструкция каркаса правильная относительно размера и точности, то недостатков по сравнению с указанной технологией нет.

Должен ли оксид циркония шлифоваться с применением водяного охлаждения (например, коррекция при примерке каркасной структуры)?

• Водяное охлаждение рекомендуется, но не требуется обязательно.

Каков процесс старения диоксида циркония и соответствующая потеря прочности по сравнению с обычной металлокерамикой?

• Все материалы каркасных структур подвергаются старению, включая металлы. Прочность на изгиб до старения металла составляет примерно 500 МПа, а для ICE Zirconia примерно 1400 МПа. Теоретическая, но пока что не доказанная потеря прочности в 30% все-таки оставляет прочность значением в 980 МПа для диоксида циркония.

• Это секрет предприятия.

Как образуется связь между керамикой и диоксидом циркония?

 Механическая удерживающая способность. Сжимающее напряжение и поверхностный синтез.

Сколько исследований было проведено относительно долговременной работы диоксида циркония?

 Исследования университета Цюриха показывают абсолютно положительную работу диоксида циркония в течение долгого времени. Испытания по долговременности работы диоксида циркония впервые были начаты примерно 12 лет назад.

С помощью каких средств может крепиться протез из циркона?

• Фосфатный цемент или стеклоиономерный цемент.

Сравнение стойкости диоксида циркония со стойкостью металлокерамики

• Циркон устойчив к поломке, однако менее жесткий, чем благородный металл.

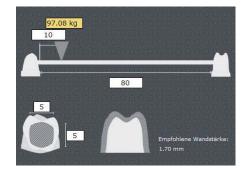
Какие существуют показания и/или противопоказания?

- Все показания, имеющиеся для ассортимента съемных и несъемных конструкций.
- Противопоказания в случае слишком маленького вертикального размера.

Вопросы и ответы, относящиеся к практическому использованию диоксида циркония

Эстетическое сравнение диоксидциркониевой керамики и металлокерамики

 Каркасные структуры из диоксида циркония ICE прозрачные, и таким образом эстетически более совершенны по сравнению с непрозрачными металлическими каркасными структурами.


Возможно ли расширение контуров после подгонки?

• Расширение контуров после подгонки каркасной структуры возможно выполнить с помощью керамических буртиков. Однако, лучше подгонять каркас до фрезерования.

Почему мосты ломаются?

 Мосты могут ломаться, если при изготовлении каркасной структуры допущена существенная ошибка. Zirkonzahn обладает технологией расчета размеров структур мостов. Эту программу можно скачать бесплатно на сайте www.zirkonzahn.com.

Каркасные структуры из диоксида циркония всегда без трения и всегда выпадают изо рта пациента при подгонке.

• Трение технически возможно, но не рекомендуется. Лучше покрывать каркасные структуры тонким слоем вазелина перед подгонкой.

Является ли циркон радиоактивным?

 Все кругом радиоактивно! Человеческое тело имеет 6000 беккерель. Один грамм оксида циркона имеет примерно 0,4 беккерель. Коронка весить примерно 1 грамм, металлокерамика может иметь до 2 беккерель на грамм.

Контуры коронки на объектах из диоксида циркония слишком толстые.

• Это проблема не материала, а погрешность обработки. После фрезерования и перед агломерацией заготовки из диоксида циркония ICE контуры коронок должны быть вручную и тонко подготовлены техником.

Какая цена по сравнению с металлокерамикой?

Цена эквивалентна или немного больше, чем цена металлокерамики.

Вопросы и ответы, относящиеся к практическому использованию диоксида циркония

Хорошо ли выполняется подгонка диоксида циркония?

• Если процесс обработки правильный, точность подгонки составляет сотые доли при работе с системой Zirkonzahn. Маргинальная целостность достигает 20 микрон как с золотой заготовкой.

Что происходит, когда выполняется шлифовка / коррекционная шлифовка диоксида циркония?

• Проблем нет, если такая шлифовка выполняется с охлаждением водой, и закругляются любые возникающие острые края.

Какое применение диоксида циркония Prettau?

• Диоксид циркония Prettau очень прозрачен и используется для изготовления эстетических полностью циркониевых конструкция вместе со специально разработанной технологией окрашивания, особенно в сфере имплантатов, а также для предотвращения скалывания керамики.

Является ли обработка по касательной официально достаточно безопасной для работ с диоксидом циркония?

 Нет возражений со стороны компании Zirkonzahn против предварительной обработки по касательной, если есть подходящая конструкция каркаса.

Достаточно ли прочна коронка из диоксида, циркония или ее уже невозможно использовать после трепанации?

• При использовании охлаждения водой и соответствующих инструментов повреждения каркаса произойти не должно.

Какие сверлильные инструменты рекомендуется использовать при трепанации коронок из диоксида циркония?

• Рекомендуются использовать циркониевые алмазные боры.

Zirkonzahn

- 1. Начальное положение
- 2. Протез дублируется, заполняется с помощью Frame и в этом дубликате фрезеруется крепление дуги

- 3. Крепление дуги и части дуги шлифуются с помощью алмазного бора
- 4. Шероховатая поверхность полируется с помощью тонких алмазных боров и алмазной полировальной пасты для получения идеального глянцевого блеска

- 5. Вторичная часть изготавливается из материала Frame и передние зубы шлифуются для последующей керамической облицовки
- 6. Агломерированный мост

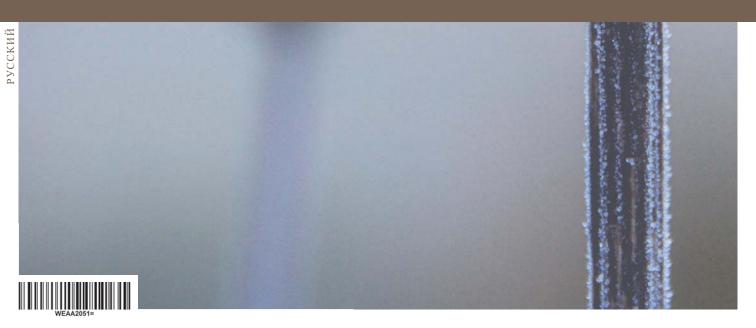
- 7. Ориентированная вторичная часть
- 8. Примерка во рту

- 9. Наслаивание керамики на передние зубы с применением ICE zirconia ceramic
- 10. Нанесение десны с использованием ICE zirconia ceramic tissue

- 11. Вторичная часть
- 12. Вторичная часть и первичная часть

- 13. Законченная обработка протеза со стороны прикуса
- 14. Крепление дуги винтами

- 15. Заготовка протеза готова для цементирования
- 16. Зацементированная с помощью Temp Bond заготовка протеза



Законченный протез.
ICE zirconia и ICE zirconia ceramic
Zilio Aldo, Венеция

Диоксид циркония – информация для стоматологов

Zirkonzahn World Wide - Ан дэр Ар 7 - 39030 Гаис/Южный Тирол (Италия) Тел. +39 0474 066 660 - Фах +39 0474 066 661 - www.zirkonzahn.com - info@zirkonzahn.com

